The European Court of Justice has decided: Bees or GMOs?

Wednesday 07 September 2011

Maize GMO Court of Justice beekeeping

GM corn (gm-corn-picture.jpg)The European Court of Justice today provided its judgement: Beekeeping products contaminated with pollen derived from GM crops are considered “products derived from GMOs”

We now face a profound dilemma: Do we just automatically accept that all honey and pollen is now contaminated with GM products? Or do we demand legislation which orders that safe distances or quarantine zones must be imposed to protect bees and apiaries from toxic GM crops?

In 2005, the honey of an amateur beekeeper, Mr Bablok, from the German region of Bavaria, was found to be contaminated with GM pollen, derived from Bt corn fields (MON810) that this region was testing. According to European legislation (Regulation (EC) 1829/2003), any food-product containing GM material must go through an approval process to prove it is safe for consumers.

Since Mr Bablok believed that the GM test-crops had contaminated his honey with GM material and GM toxins, he initiated legal proceedings before the German Court of Justice. The European Court of Justice has now asserted three critical findings in its judgement, of September 6th 2011, namely:

  1. Pollen derived from GM crops, that is found in the beehive, is not considered a GM organism (GMO)
  2. Beekeeping products containing pollen derived from GM crops are considered as "produce from GMOs"
  3. The presence of GM material in honey, pollen and beekeeping products cannot be tolerated, it is illegal.

Farming was practised in a sustainable manner for centuries, until the arrival of industrialised and chemicalised farming post WWII. Along with industrial farming and monocultures, tools to control pests were developed, such as GMOs, or various forms of pesticide application (e.g. seed or soil treatments). However, the implications for our health, wildlife and our environment remain still unclear.

Recent scientific studies have proved that systemic pesticides and GM plant toxins inflict poisonous effects on the nervous systems of bees[1] and other possible toxic effects on beneficial insects like butterflies and ladybirds[2]. The pollen that Mr Bablok collected from his hives contained both genetic material from GM maize and Bacillus Thuringiensis (Bt) toxins with insecticidal properties. Therefore, quite apart from the problem that this may pose for consumers, this pollen may prove toxic for bees and other wildlife.

For many years, politicians and regulators have been unwilling to address the problem of coexistence between GM crops and traditional agriculture. But this has now come to a crisis point with beekeeping; the agricultural sector that is crucial for the pollination of a great part of human food-crops.

Bees visit flowers to harvest nectar and pollen, from which they make the honey and pollen which we consume. It is impossible to restrict the areas and flowers which the bees visit, and consequently, if the planting of GM crops in Europe increases, GM pollen and plant toxins will increasingly be found in honey and pollen.

In Europe, however, it may still be possible to avoid this problem, because the area of land planted with GM is relatively small (in Bulgaria, Romania and Spain), despite suspicions of unauthorised GMO farming in some EU member states[3]. The situation is infinitely worse in other countries like USA, Canada, China, Argentina, Brazil or India, where GM crops are now 'the norm' rather than the exception. In America for example, over 92 million acres were planted with GM Maize, treated with systemic neonicotinoid pesticides in 2010.

The consequences for the market are undeniable; this is a disaster for beekeepers, for honey producers and for the whole of agriculture.

Europe's beekeeping industry will clearly be devastated as a result of this judgement. Until last week, Honey and pollen commanded a high retail value, because it was seen as good for people's for health and wellbeing; it may now be regarded as injurious to people's health and wellbeing. Beekeepers, cannot possibly control where their bees forage or which crops they visit, and will now be forced to prove that their products have not been contaminated with GM material. Laboratory tests will now be needed on every batch of honey and pollen, to certify that they are “GM free”. This will involve huge financial costs for both large and small beekeepers and will drive the majority of the 600.000 beekeepers in Europe from the market, since small-producers will not be able to bear such financial costs.

Those beekeepers who do manage to remain in business, despite the extra costs of the “GM free” certification, will face dramatically increased costs of production and as a result they will be forced to increase the retail price for consumers.

Lab photo (lab-picture.jpeg) If laboratory tests reveal that there is GM content in the honey and pollen, beekeepers (who cannot possibly avoid contamination), will be forced to market their products with the label “produced from GMOs”. This would prove to be a massive marketing handicap and would probably make their products unsaleable, if not completely worthless.

The European Union imports 40% of all the honey it consumes and the EU countries mentioned above, where GMOs are planted and used, account for at least 20% of EU honey production. The decision of the Court implies the withdrawal from the European market of approximately 50-60% of existing honey, which will cause consumer prices to soar. This could deliver a fatal blow to the entire market for beekeeping products in Europe, since the the average consumer will view them with great suspicion.

The opinion of the Court of Justice has made it clear: GM pollen in agricultural products equals the end for beekeeping products.

It is time for European consumers and politicians to make a decision: Do we want GMOs and GM toxins in our food, or do we want healthy bees, wholesome honey and pollen and bee-products which are free from GMOs?

Notes

[1] Ramirez-Romero R.; Desneux N.; Decourtye A.; Chaffiol A.; Pham-Delègue M.H. (2008) Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol Environ Saf. 70:327-33

[2] http://independentsciencenews.org/n...

[3] http://www.naturalnews.com/033098_H...